Запишите уравнение окружности и прямой проходящей через ее центр и параллельной оси ординат если а(-1; 6) в(-1; -2)- концы диаметра окружности

lisa221513 lisa221513    1   25.06.2019 10:20    2

Ответы
dianaverina7777 dianaverina7777  20.07.2020 16:19
Находим координаты центра окружности как середину отрезка АВ:
хм=(-1+1)/2=0
ум=(6-2)/2=2.
Находим расстояние АМ по формуле расстояния между двумя точками. Это будет радиус окружности:
АМ=корень (((-1-0)^2+(6-2)^2)=корень (91+16)=корень из 17.
Уравнение окружности
(х-х0)^2+(y-y0)^2=R^2.
х^2+(y-2)^2=17.

Уравнение прямой, проходящей через точку М (0.2) параллельно оси Ох: у=2.
А прямая, проходящая вертикально через центр, это будет сама ось Оу: х=0.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия