What is the sum of the meausures of the interior angles of a polygon which has 20 diagonals

Fire73 Fire73    3   02.09.2021 14:18    0

Ответы
GenaTurboKrytt GenaTurboKrytt  02.09.2021 14:20

ответ: 1080^o.

Объяснение:

If the number of diagonals is 20, then the number of corners is:

N=\dfrac{n(n-3)}{2} N \: - \: \text {number of diagonals};\\n \: - \: \text {number of angles}.\\

N=2020=\dfrac{n(n-3)}{2} n(n-3)=2 \cdot 20n^{2} -3n=40n^{2} -3n-40=0D=(-3)^{2} -4 \cdot (-40)=9+160=169=13^{2} n =\dfrac{3+13}{2} =8

Formula to find the sum of interior angles of a n-sided polygon:

S_{n} =(n-2) \cdot 180^oS_{n} =(8-2) \cdot 180^o=6 \cdot 180^o=1080^o

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия