... Высота усечённого конуса равна 5, а диагональ осевого сечения -13. радиусы оснований относятся как 1:2. найдите площадь боковой поверхности усечённого конуса. ​

Pulpy1235 Pulpy1235    3   14.03.2021 14:38    16

Ответы
rtydykov rtydykov  13.04.2021 14:39

Осевое сечение - это равнобедренная трапеция. Проведём в ней диагональ и высоту из одной точки, образовался прямоугольный треугольник. Найдём в нём неизвестный катет: √(13^2-5^2)=12. Этот катет располагается на большем основании. Известно что радиусы оснований конуса, а значит и основания трапеции относятся как 1:2, значит можно составить уравнение, где 12-х - длина меньшего основания, а 2х - на сколько большее основание больше:

(12-х):(12-х+2х)=1:2

(12-х):(12+х)=1:2

12+х=24-2х

3х=12

х=4

Длина меньшего основания: 12-4=8

Большего: 12+4=16

Радиус меньшего основания: 8/2=4

Большего: 16/2=8

Нужно найти боковую сторону L трапеции:

L=√(5^2+x^2)=√(5^2+4^2)=√41

По формуле находим площадь боковой поверхности: pi*L*(R+r)=12√41*pi

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия