АВ = CD так трапеция равнобедренная, ∠ВАС = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников ВАС и CDA, ⇒ ΔВАС = ΔCDA по двум сторонам и углу между ними, значит ∠CAD = ∠BDA.
Тогда ΔAOD равнобедренный прямоугольный. ΔВОС подобен ему по двум углам, значит тоже равнобедренный.
Проведем высоту трапеции КН через точку пересечения диагоналей. Для равнобедренных треугольников AOD и ВОС отрезки ОН и ОК - высоты и медианы, а в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине: КО = ВС/2 НО = AD/2, ⇒ KH = (AD + BC)/2 = 9 см, тогда AD + BC = 18 см
Pabcd = 2AB + AD + BC = 24 + 18 = 42 см
!Вообще, в если в равнобедренной трапеции диагонали перпендикулярны, ее высота равна средней линии!
∠ВАС = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников ВАС и CDA, ⇒
ΔВАС = ΔCDA по двум сторонам и углу между ними,
значит ∠CAD = ∠BDA.
Тогда ΔAOD равнобедренный прямоугольный.
ΔВОС подобен ему по двум углам, значит тоже равнобедренный.
Проведем высоту трапеции КН через точку пересечения диагоналей.
Для равнобедренных треугольников AOD и ВОС отрезки ОН и ОК - высоты и медианы, а в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине:
КО = ВС/2
НО = AD/2, ⇒
KH = (AD + BC)/2 = 9 см,
тогда AD + BC = 18 см
Pabcd = 2AB + AD + BC = 24 + 18 = 42 см
!Вообще, в если в равнобедренной трапеции диагонали перпендикулярны, ее высота равна средней линии!