Высота равнобедренного треугольника равна 10 см. отношение основания к боковой стороне 6: 5 . найдите радиус описанной окружности.

Картофан7777777 Картофан7777777    3   20.07.2019 01:30    0

Ответы
krasilovaen krasilovaen  22.09.2020 18:43
Пусть основание равно 6х, тогда боковая сторона равна 5х.
Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая.
Запишем теорему Пифагора для одного из прямоугольных треугольников:
10^2+(3x)^2=(5x)^2 \\ 
100+9x^2=25x^2 \\ 
100=16x^2 \\ x^2= \frac{100}{16} \\ 
x=10/4=2,5 \\ 

Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5.
Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75.
С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть:
S= \frac{a*b*c}{4R} \\ 
75= \frac{12,5*12,5*15}{4R} \\ 
R= \frac{2343,75}{300} =7,8125
ответ: 7,8125
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия