Высота конуса равна 6см угол при вершине осевого сечения равен 120градусов найдите: а)площадь боковой поверхности конуса б)площадь полной поверхности конуса в)площадь сечения конуса плоскостью проходящей через две образующей , угол между которыми 30 градусов

sasha7070 sasha7070    3   03.09.2019 11:00    3

Ответы
Tililinka Tililinka  06.10.2020 14:34
Начнем со второй) Площадь основания равна 16пи, следовательно r = 4) из формулы площпди основания (кпуга) S=пи*радиусс в квадрате находим высоту, если осевое сечение квадарат, а стороны этого квадарта 2 радиусса, тоесть 8 см, то высота тоже равна 8см) находим площадь полной поверхности S = 2пиRH+2пиR*R Получается: 2*4*8*пи + 2*4*4*пи = 64пи+32пи=96пи  первая) значит конус с высотой 6 и с осевым сечение, угол при вершине 120) хорошо рисуем конус, проводим высоту, осевое сечение) получается, что высота делит угол 120 градусов по-полам) углы при основаниях равны по 30) значит получается равнобедренный треугольник) сторона лежащая против угла в 30 градусов равна половине гипотенузе, в нашем случается получается, что образующая, которая и является гипотенузой в два раза больше высоты) Тоесть 12 см. найдем радиусс окружности по теореме пифагора, получается 6 корней из трех. Теперь а) проводим еще одно осевое сечение, угол при вершины 30 градусов, образующие 12) получается из формулы равнобедренного треугольника, что S = 1/2 12*12 *sin 30 - я думаю решишь) (ответ 36 см в квадрате) Теперь б) Площадь боковой поверхности находится S=пиRL Радиусс мы знаем, образующуюю тоже. Получается S = пи*12*6корней из трех = 72 коней из трех * ПИ
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия