Высота конуса равна 6см, угол при вершине осевого сечения равен 60 градусов. найти площадь боковой поверхности конуса.

emilityan emilityan    1   08.06.2019 19:50    9

Ответы
ishimovaalbina ishimovaalbina  01.10.2020 22:26
Осевое сечение конуса-равнобедренный треугольник,углв=ы при основании которого равны.угол при вершине равен 60 градусов,значит два других угла равны 180-60/2=60 градусов.следовательно треугольник равносторонний,или правильный.
высота,равная 6,делит треугольник на два равных прямоугольных. тангенс угла при основании равен отношению высоты к радиусу конуса: tg60=6/R
корень из 3=6/R. R=2*корень из 3
по теореме пифагора найдем образующую,являющуюся гипотенузой прямоугольного треугольника с катетами 6 и 2*корень из 3
L^2=36+12
L=корень из 48=4*корень из 3
площадь боковой поверхности конуса равна пи*R*l
S=пи*2*корень из 3*4*корень из 3=8*3*пи=24пи
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия