Высота и образующая конуса относятся как 4: 5 , а объем конуса равен 96п см^3. найдите площадь полной поверхности.

linniklera linniklera    1   26.07.2019 09:30    4

Ответы
solovyovaolena solovyovaolena  24.09.2020 21:24

Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.

Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.

ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).

Подставляем полученные выражения в формулу объема:

V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.

12πх³ = 96π,

х³ = 8,

х = 2.

Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).

Площадь полной поверхности конуса равна:

Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.

Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).

ответ: 96 см².


Высота и образующая конуса относятся как 4: 5 , а объем конуса равен 96п см^3. найдите площадь полно
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия