Высота cd прямоугольного треугольника авс, проведённая из вершины прямого угла, равна 4 см. известно что она делит гипотенузу на отрезки ,один из которых равен 4 корней из 3 см. найдите градусные меры острых углов треугольника авс.

zoriy22 zoriy22    3   16.09.2019 02:50    2

Ответы
danek20063 danek20063  07.10.2020 18:52

Вариант решения. 

Найдем второй отрезок  гипотенузы. 

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.⇒

СD²=АD•ВD

16=4√3•BD

BD=16:4√3=\frac{4}{ \sqrt{3}}

Из ∆ АВD: ∠САD= arctg 4:4 \sqrt{3} = \frac{1}{ \sqrt{3}}, т.е. 30°

Из ∆ ВСD ∠СВD=arctg 4: \frac{4}{ \sqrt{3} } = \sqrt{3} , т.е.60°

ПОКАЗАТЬ ОТВЕТЫ
R456 R456  07.10.2020 18:52
Пусть AD = 4 * корень(3). Треугольник CDA прямоугольный, поэтому tg(CAD) = CD / DA = 4 / (4 * корень(3)) = 1 / корень(3) CAD = 30 градусов. Углы треугольника ABC: CAB + ABC + BCA = 180 30 + ABC + 90 = 180 ABC = 180 - 30 - 90 = 60 ответ: 30 градусов и 60 градусов.
Высота cd прямоугольного треугольника авс, проведённая из вершины прямого угла, равна 4 см. известно
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия