Вычислите объем правильной треугольной пирамиды, если длина стороны ее основания равна 3 см, а длина бокового ребра 2 см

slava531 slava531    1   02.06.2019 21:30    7

Ответы
chanel00 chanel00  03.07.2020 13:23
Пирамида КАВС, К-вершина, АВС-правильный треугольник АВ=ВС=АС=3, КА=КВ=КС=2, О-центр основания (пресечение высот=медианам=биссектрисам), КО-высота пирамиды, площадьАВС=АС в квадрате*корень3/4=9*корень3/4, проводим высоту ВН, ВН=АС*корень3/2=3*корень3/2, ОН=1/3ВН=3*корень3/(2*3)=корень3/2, АН=НС=1/2АС=3/2, проводим апофему КН, треугольник АКН прямоугольный, КН=корень(КА в квадрате-АН в квадрате)=корень(4-9/4)=корень7/2треугольник КНО прямоугольный, КО=корень(КН в квадрате-ОН в квадрате)=корень(7/4 - 3/4)=1, объем=1/3*площадьАВС*КО=1*9*корень3/(4*3)=3*корень3/4
ПОКАЗАТЬ ОТВЕТЫ
zorohast zorohast  03.07.2020 13:23
Основание имеет стороны 3,3,4
h(осн) = √9-4=√5
S(осн) = 1/2*√5*4=2√5
Н-высота пирамиды
Н=3√11 / 2√5
V=3√11*2√5 / 2√5*3=√11
ответ: объем пирамиды равен √11
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия