Вычислить площадь равносторонней трапеции основания которой равны 12 см, 18 см, а диагонали взаимно перпендикулярны

ааа516 ааа516    2   28.07.2019 23:40    0

Ответы
sofiko07161 sofiko07161  31.08.2020 01:39
В равнобедренной трапеции АВСD диагонали взаимно перпендикулярны. Значит треугольники АОD и ВОС прямоугольные и равнобедренные. Высота трапеции равна сумме высот этих треугольников, которые можно найти по свойству высоты из прямого угла к гипотенузе: h=√d*e, где h - высота, а  d и e - отрезки гипотенузы, на которые гипотенуза делится этой высотой. В нашем случае эти отрезки равны, так как треугольники равнобедренные. тогда h1=√(9*9)=9, а h2=√(6*6)=6. Высота трапеции равна H=9+6=15.
Тогда площадь трапеции равна S=(AB+CD)*Н/2=(12+16)*15/2=210.
ответ: Н=210 ед².
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия