Дано:
Сторона ВС = 8 (BC = 8)
Угол А = 45° (angle A = 45°)
Угол В = 75° (angle B = 75°)
Найти:
Сторону АВ (side AB)
Решение:
1. Поскольку нам даны два угла, мы можем найти третий угол треугольника, используя формулу суммы углов треугольника: угол С = 180° - (угол А + угол В).
Угол С = 180° - (45° + 75°) = 180° - 120° = 60°.
2. Затем используем закон синусов, чтобы найти сторону АВ. Для этого, мы можем использовать следующую формулу:
(AB / sin A) = (BC / sin C).
Подставляем значения:
(AB / sin 45°) = (8 / sin 60°).
Теперь, чтобы найти сторону АВ, мы должны решить это уравнение. Воспользуемся принципом умножения обоих сторон на sin 45°:
AB = (8 / sin 60°) * sin 45°.
3. Вычислим значения sin 45° и sin 60°:
sin 45° = √2 / 2.
sin 60° = √3 / 2.
4. Подставим полученные значения и выполним необходимые вычисления:
AB = (8 / (√3 / 2)) * ( √2 / 2).
AB = (8 * 2 * √2) / (√3 * 2).
AB = (16 * √2) / (√3)
AB = (16√2 / √3)
5. Чтобы упростить полученное выражение, умножим числитель и знаменатель на √3:
AB = (16√2 * √3) / (√3 * √3)
AB = (16√6) / 3
Таким образом, сторона АВ равна (16√6) / 3, или в более упрощенной форме, 4√6.
Сторона ВС = 8 (BC = 8)
Угол А = 45° (angle A = 45°)
Угол В = 75° (angle B = 75°)
Найти:
Сторону АВ (side AB)
Решение:
1. Поскольку нам даны два угла, мы можем найти третий угол треугольника, используя формулу суммы углов треугольника: угол С = 180° - (угол А + угол В).
Угол С = 180° - (45° + 75°) = 180° - 120° = 60°.
2. Затем используем закон синусов, чтобы найти сторону АВ. Для этого, мы можем использовать следующую формулу:
(AB / sin A) = (BC / sin C).
Подставляем значения:
(AB / sin 45°) = (8 / sin 60°).
Теперь, чтобы найти сторону АВ, мы должны решить это уравнение. Воспользуемся принципом умножения обоих сторон на sin 45°:
AB = (8 / sin 60°) * sin 45°.
3. Вычислим значения sin 45° и sin 60°:
sin 45° = √2 / 2.
sin 60° = √3 / 2.
4. Подставим полученные значения и выполним необходимые вычисления:
AB = (8 / (√3 / 2)) * ( √2 / 2).
AB = (8 * 2 * √2) / (√3 * 2).
AB = (16 * √2) / (√3)
AB = (16√2 / √3)
5. Чтобы упростить полученное выражение, умножим числитель и знаменатель на √3:
AB = (16√2 * √3) / (√3 * √3)
AB = (16√6) / 3
Таким образом, сторона АВ равна (16√6) / 3, или в более упрощенной форме, 4√6.