Втреугольнике abc со сторонами ab=2 bc=3 ac=4 биссектриса угла bac пересекает противоположную сторону в точке d. окружность проходящая через точки а,с,d пересекает сторону ab в точке е (отличной от а). найдите площадь треугольника ade.

vanya165 vanya165    3   01.07.2019 12:10    0

Ответы
Радость10000 Радость10000  24.07.2020 21:24
Найдем угол \angle BAC\\
     
4+16-2-2*4*cos\angle BAC = 9 \\ 
 cos \angle BAC = \frac{11}{16}  
 Так же и    
Найдем угол  \angle ABC \\
 cos \angle ABC= - \frac{1}{4} 
Найдем угол  cso \angle BCA = \frac{7}{8}
\frac{AB}{AC} = \frac{2}{4} = \frac{BD}{CD}\\
 BD=1\\
 CD=2
 Из свойств  секущих      BE*2=1*3\\
 BE=\frac{3}{2}\\
 S_{AED} = S_{ABC}-S_{BED} - S_{ACD } = \\\\ 
 S_{AED} = \frac{3*\sqrt{15}}{4} - \frac{3*\sqrt{15}}{16} - \frac{\sqrt{15}}{2} = \frac{\sqrt{15}}{16}
        
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия