Втреугольнике abc проведена медиана bm.прямая проходящая через точку a,пересекает медиану в точке k,а сторону bc-в точке d,при этом bk: km=3: 2.найти отношение площади треугольника abk к площади четырехугольник kdcm
Как известно, медиана делит треугольник на два равновеликих треугольника (у них общая высота и равные основания). Площадь BAK равна 3/5 площади BAM (у них общая высота, а сторона BK по условию относится к стороне BM как 3/5).
Чтобы узнать, какую часть площади треугольника MCB составляет площадь четырехугольника KDCM, найдем, какую часть площади треугольника MCB составляет площадь треугольника DBK. Для этого воспользуемся теоремой Менелая, применив ее к треугольнику CBM и прямой DK:
Чтобы узнать, какую часть площади треугольника MCB составляет площадь четырехугольника KDCM, найдем, какую часть площади треугольника MCB составляет площадь треугольника DBK. Для этого воспользуемся теоремой Менелая, применив ее к треугольнику CBM и прямой DK:
Далее,
Поэтому
ответ: