Втреугольнике abc проведена биссектриса am. отрезок mk параллелен стороне ac и пересекает ab в точке k, mp параллельна ab и пересекает ac в точке p. докажите, что прямые am и kp перпендикулярны.
Рассмотрим четырехугольник АКМР. Это параллелограмм, т.к. его противоположные стороны попарно параллельны по условию (KM II AP, AK II PM). <KMA=<PAM как накрест лежащие углы при пересечении двух параллельных прямых АР и КМ секущей АМ. Но <PAM=<KAM по условию (АМ - биссектриса), значит <KMA=<KAM, и треугольник АКМ - равнобедренный (углы при его основании АМ равны между собой). Значит АК=КМ, а поскольку в параллелограмме противоположные стороны равны, то АК=КМ=РМ=АР, и АКМР - ромб. Зная свойство диагоналей ромба (диагонали ромба взаимно перпендикулярны), делаем вывод, что КР перпендикулярна АМ.
<KMA=<PAM как накрест лежащие углы при пересечении двух параллельных прямых АР и КМ секущей АМ. Но
<PAM=<KAM по условию (АМ - биссектриса), значит
<KMA=<KAM, и треугольник АКМ - равнобедренный (углы при его основании АМ равны между собой). Значит
АК=КМ, а поскольку в параллелограмме противоположные стороны равны, то
АК=КМ=РМ=АР, и АКМР - ромб.
Зная свойство диагоналей ромба (диагонали ромба взаимно перпендикулярны), делаем вывод, что КР перпендикулярна АМ.