Втреугольнике abc биссектриса угла b, пересекает сторону ac в точке d, при этом, угол adb=углу abc, ad=16. dc=20.найти площадь треугольника abc.

filin781 filin781    2   26.09.2019 18:20    2

Ответы
chastener40 chastener40  08.10.2020 20:47
Треугольник ABD подобен треугольнику ABC по двум углам (∠BDA=∠ABC и ∠DAB - общий). Отсюда \frac{AD}{AB}= \frac{AB}{AC} или 
AB²=16×36⇔AB=24; По свойству биссектрис \frac{AB}{BC} = \frac{AD}{DC}= \frac{16}{20} 
Откуда BC=30; Найдем площадь по формуле Герона: S= \sqrt{p(p-AB)(p-BC)(p-AC)} ; p=(36+24+30)/2 = 45; S=405√21
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия