Втреугольнике abc ab=bc, точка o центр вписанной окружности, точки d и e точки касания вписанной окружности со сторонами ac и ab соответственно, угол abc=48. найдите угол doe
Рассмотрим четырехугольник AEOD, известно что касательная к окружности перпендикулярная к радиусу, проведенному в точку касания, т.е. ∠AEO = ∠ADO = 90°. Сумма углов четырехугольника равна 360°
Углы при основании равнобедренного треугольника:
∠BAC = ∠BCA = (180° - ∠ABC)/2 = (180° - 48°)/2 = 66°
Рассмотрим четырехугольник AEOD, известно что касательная к окружности перпендикулярная к радиусу, проведенному в точку касания, т.е. ∠AEO = ∠ADO = 90°. Сумма углов четырехугольника равна 360°
∠DOE = 360° - 66° - 90° - 90° = 114°
ответ: 114°