Втрапеции авсd расстояние от вершины а до прямой, содержащей боковую сторону сd, равно 5.найдите расстояние от середины боковой стороны ав до прямой сd, если ad: вс=5: 3 на завтра

patimatgemmamailru patimatgemmamailru    2   23.05.2019 18:00    0

Ответы
ляляляляляляля1 ляляляляляляля1  01.10.2020 10:07
расстояние от пункта до прямой - это перпендикуляр, проведенный из этого пункта к  прямой

обозначим расстояние от А до CD - АН 
АН _l_ CD ,  АН = 5 (по условию)
середину АВ обозначим К, перпендикуляр проведенный из пункта К к стороне CD обозначим КН1
продолжим стороны трапеции AB и BD до их пересечения, пункт пересечения обозначим М, 
∆ВМС подобен ∆AMD (по трем углам), 
коэффициент их подобия k= AD : BC = 5/3

проведем перпендикуляр из пункта В на сторону CD 
АН/ВН2 = k = 5/3 (АН и ВН2 - высоты подобных треугольников, проведенные к сходственным сторонам, их отношение равно коэффициенту подобия)
ВН2 = АН/k = 5 * 3/5 = 3

BH2 ll AH (<MH2 = <AHM = 90° (BH2 и AH - перпендикуляры)) ==>
==> ABH2H - трапеция

КН ll AH (<KH1M = <AHM = 90°(АН и КН1 - перпендикуляры))
К - середина АВ ==> KH1 - средняя линия
КН1 = (ВН2 + АН)/2 = (3 + 5)/2 = 4 см
Втрапеции авсd расстояние от вершины а до прямой, содержащей боковую сторону сd, равно 5.найдите рас
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия