Втрапеции abcd с основаниями ad и bc диагонали пересекаются в точке o .докажите что площади треугольников аов и соd равны

Meryem98 Meryem98    3   09.09.2019 09:10    1

Ответы
Julai1234 Julai1234  07.10.2020 02:55
То, что треугольники, образованные при пересечении диагоналей трапеции и лежащие на боковых сторонах равновелики - одно из свойств трапеции. Доказывается просто.

Проводим высоты BH и CK к основанию AD. Через основание и высоты находим площади треугольников ABD и ACD.
 S_{ABD}= \dfrac{1}{2}*BH*AD \\ S_{ACD}= \dfrac{1}{2}*CK*AD
Очевидно, что BH=CK, значит треугольники ABD и ACD равновеликие. Перепишем их площадь в виде суммы площадей треугольников, из которых состоят ΔABD и ΔACD.
 S_{ABD}=S_{AOB}+S_{AOD} \\ S_{ACD}=S_{COD}+S_{AOD}
приравняем
S_{AOB}+S_{AOD}=S_{COD}+S_{AOD} \\ S_{AOB}=S_{COD}

Все. Доказали.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия