Втрапеции abcd ad ii bc,o-точка пересечения диагоналей, ao: oc=5: 2, средняя линия рава 7 см. найдите большее основание трапеции

1Kotejka1 1Kotejka1    2   09.06.2019 14:00    3

Ответы
Nady0208 Nady0208  01.10.2020 23:08
В трапеции АВСD диагонали делят ее на треугольники, из которых треугольники ВОС и АОD - подобны , так как <OAD=<OBC, <ODA=<OBC (как внутренние накрест лежащие при параллельных ВС и АD), а <BOC=<AOD (как вертикальные).
Из подобия имеем: АО/ОС=AD/ВС=5/2. Значит ВС=(2/5)*AD.
Средняя линия трапеции равна полусумме оснований, то есть ВС+AD=14. И ВС=14-AD. тогда (14-AD) = (2/5)*AD, откуда
AD=10см.
ответ: большее основание трапеции равно 10см.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия