Втетраэдре давс точки к, е, м - середины ребра ас, дс, вс. докажите, что плоскость кем и адв параллельны и вычеслите площадь треугольника адв если площадь треугольника кем равна 27 см (квадратных).

ingab2989 ingab2989    3   28.02.2019 09:20    108

Ответы
33даник747 33даник747  23.05.2020 16:47

К, Е, М - середины рёбер АС, ДС, ВС соответственно(по условию),

следовательно: КМ, МЕ и КЕ-среднии линии треугольниковАВС, ВДС и АДС соответственно, а это означает, что КМ параллельно АВ,

                                                        МЕ параллельно ВД,

                                                        КЕ параллельно АД.

Итак, отсюда делаем вывод, что плоскости КЕМ и АДВ параллельны.

Что и требовалось доказать.

 

Найдём площадь треугольника АДВ.

Нам известно, что  КМ, МЕ и КЕ-среднии линии треугольниковАВС, ВДС и АДС соответственно, а это означает, что КМ=1/2 *АВ,

                                                               МЕ=1/2 * ВД,

                                                               Ке=1/2 *АД.

Треугольник КЕМ подобен треугольнику АВД с коэффициентом 1/2,

значит площадь треугольника КЕМ  S(KEM)=(1/2)^2 *S(ABД)=1/4 * S(ABД).

S(ABД)=4*S(KEM)=4*27=108 (см2)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия