Вот
Объяснение:
1. Средняя линия трапеции параллельна основаниям и равна их полусумме.
2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.
3. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
4.Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
5.Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
У равнобедренной трапеции углы при основе ровные
У равнобедренной трапеции диагонали равны
Вот
Объяснение:
1. Средняя линия трапеции параллельна основаниям и равна их полусумме.
2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.
3. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
4.Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
5.Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
У равнобедренной трапеции углы при основе ровные
У равнобедренной трапеции диагонали равны