Вромбе abcd ав = 10 см, меньшая диагональ ас = 12 см. найдите площадь ромба+чертёж (не по теореме пифагора)

AAMB AAMB    1   12.08.2019 20:20    1

Ответы
olmilevskaya1 olmilevskaya1  04.10.2020 14:13
Хорошо, пойдем очень сложным путем, используем формулу Sромба=a^2*sinA
Имеем основание и 2 стороны треугольника, по теореме косинусов вычислим угол, 144=100+100-200cosA; cosA=-56/200=-0.28("-"значит что угол тупой)
Используя основное тригонометрическое тождество высчитаем синус угла sinA=√(1-(-0.28^2))=0.96. Подставим найденные значения в формулу.
S=100*0.96=96
Площадь ромба 96 см
ответ: 96

У параллелограмма есть свойство, сумма квадратов диагоналей, равна сумме квадратов всех его сторон, т.к ромб частный случай параллелограмма, используем это свойство.
Значит
d1^2+d2^2=(2a^2),где a - сторона ромба
Подставив значения в формулу получим
144+d2^2=400
d^2=256
d=16
Дальше используем формулу площади четырехугольника через диагонали
S=(d1*d2)/2 диагонали в ромбе пересекаются под прямым углом, потому синус не учитываем
S=(16*12)/2=96
ответ: 96
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия