Вромб вписан круг. каждая сторона ромба точкой касания делится на отрезки, длины которых равны а и b. найдите отношение площади круга к площади ромба. решение и рисунок.

ирпимрпмро ирпимрпмро    1   08.03.2019 04:00    25

Ответы
andrei182 andrei182  24.05.2020 04:51

рисунок не могу, а такую задачу я решал тут уже, сейчас гляну...

Центр окружности находится в точке пересечения диагоналей, которые к тому же взаимно перпендикулярны. Если из центра в точку касания провести радиус, то это будет ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ, образованном половинками диагоналей и боковой стороной (как гипотенузой). Высота делит прямоугольный треугольник на 2 подобных ему же. Поэтому

a/r = r/b; r - радиус вписанной В РОМБ окружности.

r = корень(а*b);

p = 4*(a + b); это периметр ромба.

Ну, осталось найти pi*r^2/(1/2*p*r) = 2*pi*r/p (прикольно - так сказать, отношение периметров)

ответ    (1/2)*pi*корень(a*b)/(a + b);

 

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия