Вравнобокой трапеции диоганали являются биссектрисами острых углов и в точке пересечения делятся в отношении 5: 13, считая от вершины тупых углов. найдите площадь трапеции, если ее выста равна 12см.
Диагонали трапеции делят ее на треугольники, из который два - при основаниях - подобны.Треугольники АОД и ВОС подобны.В треугольнике ВСД. ∠СВД =∠ВДА по свойству углов при параллельных прямых и секущей. А так как АС и ВД биссектрисы, то и ∠ВДС=∠СВД Отсюда следует, что △ ВСД - равнобедренный.В треугольниках ВОС и АОД стороныАО:ОС=5:13.Следовательно, АД:ВС=5:13Пусть коэффициент отношения сторон равен х. Тогда АД=5х ВС=СД=13хВысота равнобедренной трапеции, опущенная из тупого угла на большее основание, делит его на отрезки, равные полуразности и полусумме оснований соответственно. ДН=полуразность=(13х-5х):2=4хСН=12смИз прямоугольного треугольника СНДСН²=СД²-НД²144=9х²х=12:3=12/3 смР=АВ+ВС+СД+АД=15х+13х=28хР=28*12:3=:3=112 ²/₃ см²