Вравнобедренный треугольник с основанием 15,5 вписана окружность. к окружности проведена касательная, параллельная основанию треугольника. найти длину боковой стороны треугольника, если длина отрезка касательной, заключенной между сторонами треугольника, равна 10,5.

dhdndbrb dhdndbrb    2   09.06.2019 03:00    0

Ответы
nikzyryanov02 nikzyryanov02  01.10.2020 22:43
Пусть АС - основание треугольника, MN - отрезок касательной внутри треугольника, высота треугольника пересекает MN в точке Р и сторону АС в точке Т. В трапецию AMNC вписана окружность, значит MN+AC=AM+NC или PN+TC=NC=13.
треугольники PBN и TBC подобны по двум углам
PN:TC=BN:BC         21/4:31/4=x:(x+13)
x=BN=27,3
BC=27,3+13=40,3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия