Вравнобедренный прямоугольный треугольник вписана окружность радиусом r . найдите его катеты и гипотенузу

mendozzzakortd mendozzzakortd    3   05.06.2019 12:00    2

Ответы
opakp9726 opakp9726  05.07.2020 23:19
Пусть в равнобедренный прямоугольный треугольник ABC с прямым углом C вписана окружность с центром O. Обозначим точки касания окружности со сторонами AC,AB и BC за D,E,F соответственно. По свойству вписанной окружности, CD=CF, AD=AE, BE=BF. Заметим, что отрезок CD равен r, так как четырехугольник CDOF - квадрат (в нём две соседние стороны равны r, а все четыре угла прямые). Обозначим отрезок AD за x, тогда стороны треугольника равны r+x, r+x и 2x. Мы знаем, что в равнобедренном прямоугольном треугольнике гипотенуза в √2 раз больше катета (это очевидно следует из теоремы Пифагора), значит, имеет место равенство √2(r+x)=2x, откуда (2-√2)x=√2r, то есть x=√2/(2-√2)*r=1/(√2-1)*r=(√2+1)*r. Значит, катет треугольника равен (√2+2)*r, а гипотенуза равна 2*(√2+1)*r.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия