Вравнобедренной трапеции с острым углом 60° и периметром 144 см, диагональ делит среднюю линию на отрезки, разницы между которыми равно 16 см. найдите основания трапеции.

Dina333098 Dina333098    1   14.06.2019 18:20    2

Ответы
niga24 niga24  02.10.2020 01:59
Пусть стороны трапеции будут a и c, меньшее основание - b? большее основание - d. Отрезки, на которые делится средняя линия диагональю, проходящей из верхнего левого угла в правый нижний - x и y. Тогда имеем:
х - y = 16, y = х -16. d =2*x (так как х - средняя линия треугольника с большим основанием. b =2*y (так как y - средняя линия треугольника с меньшим основанием трапеции. Тогда b = 2(х-16). В равнобочной трапеции высота, опущенная на большее основание, делит его на отрезки, равные полуразности и полусумме оснований. Полуразность оснований лежит против угла 30° в прямоугольном треугольнике, где гипотенуза - боковая сторона трапеции. Тогда (d-b)/2 = 2(x-x+16)/2 = 16. Итак, боковая сторона равна 16*2=32см.(как гипотенуза). Сумма двух оснований равна 144-2*32 = 80см.
Имеем: d+b = 80cм, а d-b = 32см, отсюда 2d=112, d = 56cм. Ну и b = 80-56=24cм.
ответ: основания трапеции равны 24см и 56см.
Рисунок добавлю.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия