Вравнобедренной трапеции диагональ перпендикулярна боковой стороне. длина диагонали 12 см, проекция боковой стороны на большее основание-7 см. найдите большее основание и высоту трапеции.
Трапеция АВСД. Угол АВД - прямой. Треугольник АВД - прямоугольный, АВ и ВД - катеты, АД - гипотенуза, ВН - высота этого треугольника и высота трапеции. Высота из прямого угла к гипотенузе делит ее на отрезки, которые являются проекциями катетов треугольника на гипотенузу.
АН - проекция боковой стороны АВ ( и катета треугольника АВС) на АД.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. ⇒ ВД²=АД*ДН Пусть ДН=х Тогда АД=7+х 144=(7+х)*х ⇒ х²+7х-144=0 Решив квадратное уравнение, получим х₁=9 х₂=-16 ( не подходит) НД=9 АД=7+9=16 см Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой: ВН²=АН*НД ВН²=7*9=63 ВН=√63=3√7 см..
Угол АВД - прямой.
Треугольник АВД - прямоугольный, АВ и ВД - катеты, АД - гипотенуза, ВН - высота этого треугольника и высота трапеции.
Высота из прямого угла к гипотенузе делит ее на отрезки, которые являются проекциями катетов треугольника на гипотенузу.
АН - проекция боковой стороны АВ ( и катета треугольника АВС) на АД.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. ⇒
ВД²=АД*ДН
Пусть ДН=х
Тогда АД=7+х
144=(7+х)*х ⇒
х²+7х-144=0
Решив квадратное уравнение, получим
х₁=9
х₂=-16 ( не подходит)
НД=9
АД=7+9=16 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой:
ВН²=АН*НД
ВН²=7*9=63
ВН=√63=3√7 см..