.(Впрямой треугольной призме-прямоугольный треугольник с катетами 8 см и 6 см. боковое ребро призмы равно 12см. найдите площадь полной поверхности призмы.).

HappyGamerAND3000 HappyGamerAND3000    1   28.02.2019 05:10    1

Ответы
509788866 509788866  23.05.2020 16:36

В прямой призме боковые грани это прямоугольники.

Найдём по теореме Пифагора гипотенузу прямоугольного треугольника из оснований.

\displaystyle \sqrt{8^2 +6^2 } =2\sqrt{4^2 +3^2 } =2\sqrt{25} =2\cdot 5=10

Площадь одного основания найдём как площадь прямоугольного треугольника, через катеты:

\displaystyle \frac12 \cdot 8\cdot 6 =4\cdot 6=24 см²

Тогда S(осн.) = 24·2 = 48см².

Площадь боковой поверхности найдём как сумму площадей прямоугольников:

S(бок.) = 12·6 + 12·8 + 12·10 = 12·(6+8+10) = (10+2)·24 = 240+48 = 288 см².

S(пол.) = S(осн.) + S(бок.) = 48+288 = 336 см².

ответ: 336 см².


.(Впрямой треугольной призме-прямоугольный треугольник с катетами 8 см и 6 см. боковое ребро призмы
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия