Впрямоугольном треугольнике (∠в = 90°) отрезок bd - высота, проведенная к стороне ac, ad: dc = 9: 40, bd = 4√5. прямая a, параллельная bd, делит треугольник авс на две равновеликие части. найдите длину отрезка прямой а, заключенного между сторонами треугольника авс.
7
Объяснение:
Пусть AD = 9x, a CD = 40x. Тогда высота в квадрате => 80 = 9x*40x => x^2 = 80/360 => x = √2/3
AD = 9*√2/3 = 3√2
CD = 40*√2/3 = 40√2/3
Найдем площадь треугольника ABC потом разделим ее на два получим площадь одной части, а так как прямая а образует подобный треугольник с треугольником BDC найдем его площадь и коэф. подобия ну и найдем а.
S = 49√2/3 * 4√5 * 1/2 = 98√10/3 S/2 = 49√10/3
Sbdc = 40√2/3*4√5 * 1/2 = 80√10/3
коэф. подобия в квадрате k^2 = (80√10/3):49√10/3 = 80/49; k = 4√5/7
a = 4√5 : 4√5/7 = 7