Впрямоугольном треугольнике с вершины прямоrо угла проведения высоту, биссектрису и медиану. найдите острые углы треугольника, если: кут межу высотой и медианой=10градусов

GoldTask GoldTask    1   30.06.2019 01:30    0

Ответы
ssssss22 ssssss22  23.07.2020 19:39
Пусть большой ∆ - это АВС, медиана - это отрезок АМ, высота - отрезок АV, биссектриса при моём решении не потребуется. По определению высоты в ∆ АVМ угол AVM равен 90°, при этом мы знаем, что угол между высотой и биссектрисой (это угол МAV) равен 10°. Тогда получаем, что угол АМV равен 90°-10°=80° (по теореме о сумме углов ∆). Значит, угол ВМА равен 100° как смежный с углом АМV. Из того, что в прямоугольном ∆ медиана, проведённая к гипотенузе, равна половине гипотенузы, делаем вывод, что ∆ ВМА равнобедренный (по определению). Соответственно, угол МВА равен углу МАВ и равен (180°-100°):2= 40°. Угол МВА - это угол АВС в большом прямоугольном ∆. Тогда угол ВАС равен 90°- 40°=60°. ответ: углы ∆ равны 40° и 60°.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия