Впрямоугольном треугольнике с гипотенузой ab = 21 медиана ad пересекает биссектрису bk в точке o, расстояние от точки o до катета ac равно 3 . найдите катеты и расстояние от точки o до гипотенузы ab.
В трапеции пересечение продолжений боковых сторон и середины оснований лежат на одной прямой. О - середина EF.
EO=OF=3, EF=6
Биссектриса внутреннего угла при параллельных отсекает равнобедренный треугольник (∠EOB=∠CBO, накрест лежащие. ∠EOB=∠EBO).
BE=EO=3, AE=18
△ABC~△AEF (по соответственным углам при BC||EF)
BC/EF=AB/AE =21/18 =7/6, BC=7
AC=√(21^2 -7^2) =√(14*28) =14√2
Точка О лежит на биссектрисе угла ABC, следовательно равноудалена от сторон угла. Расстояние между параллельными постоянно, поэтому достаточно найти FC.
Объяснение: Решение : /////////////////////////
Через точку O проведем EF||BC.
В трапеции пересечение продолжений боковых сторон и середины оснований лежат на одной прямой. О - середина EF.
EO=OF=3, EF=6
Биссектриса внутреннего угла при параллельных отсекает равнобедренный треугольник (∠EOB=∠CBO, накрест лежащие. ∠EOB=∠EBO).
BE=EO=3, AE=18
△ABC~△AEF (по соответственным углам при BC||EF)
BC/EF=AB/AE =21/18 =7/6, BC=7
AC=√(21^2 -7^2) =√(14*28) =14√2
Точка О лежит на биссектрисе угла ABC, следовательно равноудалена от сторон угла. Расстояние между параллельными постоянно, поэтому достаточно найти FC.
AF/AC =6/7 => FC=AC-AF =AC/7 =2√2