Впрямоугольном треугольнике один из острых углов равен 60° , а прилежаший к нему катет равен 12 см. найдите длины отрезков, на которые высота, проведённая из вершин прямого угла, делит гипотенузу

NeoBall NeoBall    1   24.07.2019 18:30    2

Ответы
Bened Bened  03.10.2020 12:02
Дано: 
∆ ABC — прямоугольный; 
Угол A = 60°; 
AB = 12 см; 
BO — высота. 
Найти: AO, OC. 

Решение: 

1. Рассмотрим ∆ ABC: угол B = 90°, угол А = 60°, AB = 12 см, BO — высота. Зная, что по теореме сумма всех углов треугольника = 180°, найдем угол C: 180° - угол A - угол B = 180° - 90° - 60° = 30°. По теореме катет, лежащий против угла в 30°, равен 1/2 гипотенузы. Катет AB = 12 см = 1/2 гипотенузы, следовательно, гипотенуза AC равна 12 * 2 = 24 см. 

2. Т.к. BO — высота, угол AOB = 90°. Найдем угол ABO (сумма всех углов треугольника = 180°): 180° - угол A - угол O = 180° - 60° - 90° = 30°. Катет, лежащий против угла в 30° = 1/2 гипотенузы. AO = 1/2 AB = 6 см. 

3. Найдем OC. Зная, что AC = 24 см, а AO = 6 см, OC = AC - AO = 24 см - 6 см = 18 см. 

ответ: 6 см и 18 см. 

Впрямоугольном треугольнике один из острых углов равен 60° , а прилежаший к нему катет равен 12 см.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия