Впрямоугольном треугольнике из вершины угла, равного 600, проведена биссектриса. расстояние от основания биссектрисы до вершины другого острого угла равно 14 см. найдите расстояние от основания биссектрисы до вершины прямого угла. боже мой ,можете сделать на бумажке?
Из вершины угла А, равного 60°, проведена биссектриса АД.
Отрезок СД = 14 см.
Отрезок ВД обозначим х, а катет АВ - у.
Запишем тангенсы углов:
tg АВД = х/у,
tg САВ = (х + 14)/у.
По заданию имеем угол АВД = 30°, угол САВ = 60°.
Тогда х/у = 1/√3,
(х + 14)/у = √3.
Из первого уравнения у = х√3 подставим во второе:
(х + 14)/(х√3) = √3.
Получаем х + 14 = 3х, откуда 2х = 14 и х = 14/2 = 7 см.
Катет АВ = у = х√3 = 7√3 см.
ответ: катеты равны - АВ = 7√3 см, ВС = 7 + 14 = 21 см,
гипотенуза АС = √(147 + 441) = √588 = 14√3 см.