Впрямоугольном треугольнике из вершины прямого угла опущена высота и проведена биссектрисса. расстояние между точками их пересечения с гипотенузой составляет 3 см. найдите площадь треугольника, если расстояние от точки н до одного конца гипотенузы в 4 раза больше расстояния от точки н до другого конца гипотенузы, а точка н - это пересечение гипотенузы и проведенной высоты. заранее всем .

artmai02 artmai02    2   23.05.2019 22:50    1

Ответы
mike432 mike432  19.06.2020 18:24
Обозначим АН=х и ВН=4х. Из подобия треугольников АСН и АСВ имеем 
AC^{2}=AH*AB=x*5x=5 x^{2}
Из подобия треугольников ВСН и АСВ имеем 
BC ^{2}=BH*AB=4x*5x=20 x^{2}
\frac{AC}{BC}= \frac{1}{2}, (-1/2 посторонний корень).
Пусть СК биссектриса. Т к ВН больший отрезок гипотенузы, то точка К лежит на ВН. По свойству биссектрисы 
\frac{AC}{AK}= \frac{BC}{BK}; \frac{AC}{x+3}= \frac{BC}{4x-3}
\frac{AC}{BC}= \frac{x+3}{4x-3}
Получаем равенство \frac{x+3}{4x-3} = \frac{1}{2}; 2x+6=4x-3;x=4,5
AH=4,5;  BH=18.
Из подобия треугольников АСН и СВН имеем CH ^{2}=4,5*18=81;CH=9.
S= \frac{1}{2}AB*CH= \frac{1}{2}*22,5*9=101,25
ответ 101,25 кв см
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия