Пусть точка О - центр правильного ΔАВС.Построим AK┴BC и отрезок DK. По теореме о 3-х перпендикулярах DK┴BC.
а) В правильной пирамиде все боковые ребра равны, поэтому достаточно вычислить длину ребра AD.
OA=R, R - радиус описанной около ΔАВС окружности.
Объяснение:
б) ΔADB=ΔBDC=ΔADC (по трем сто ронам), отсюда следует, что плоские углы при вершине пирамиды равны.
По теореме косинусов имеем:
AB2=AD2=DB2 - 2ADВсе боковые ребра составляют с плоскостью основания одинако вые углы. Это следует из равенства ΔDAO=ΔDBO=ΔDCO
г) Все боковые грани наклонены к плоскости основания под
одинаковым углом. Из ΔDOК имеем:∙DB∙cosα,
Пусть точка О - центр правильного ΔАВС.Построим AK┴BC и отрезок DK. По теореме о 3-х перпендикулярах DK┴BC.
а) В правильной пирамиде все боковые ребра равны, поэтому достаточно вычислить длину ребра AD.
OA=R, R - радиус описанной около ΔАВС окружности.
Объяснение:
б) ΔADB=ΔBDC=ΔADC (по трем сто ронам), отсюда следует, что плоские углы при вершине пирамиды равны.
По теореме косинусов имеем:
AB2=AD2=DB2 - 2ADВсе боковые ребра составляют с плоскостью основания одинако вые углы. Это следует из равенства ΔDAO=ΔDBO=ΔDCO
г) Все боковые грани наклонены к плоскости основания под
одинаковым углом. Из ΔDOК имеем:∙DB∙cosα,