Вправильной пирамиде sabc точка m - середина ребра bc, s - вершина. известно, что ab=6, а площадь боковой повехности равна 47. найдите длину отрезка sm.

ерикос ерикос    2   19.06.2019 01:50    2

Ответы
кккк51 кккк51  15.07.2020 13:16
Площадь боковой поверхности = 3(ВС*SM*1/2)=47
BC*SM*1/2 =47/3
BC*SM = (47*2)/3
BC=AВ=6 (в правильной пирамиде в основании лежит равностороний треугольник)
6*SM=(47*2)/3
SM= (47*2)/(3*6)= 94/18=47/9=5 целых 2/9
Я не уверен в правильности решения.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия