Вправильной четырехугольной пирамиде мавсд боковое ребро равно 8 см и наклонено к плоскости основания под углом 60 градусов . найти: 1) s боковой поверхности 2) v пирамиды 3) угол между противоположными боковыми
гранями 4) v описанного около пирамиды шара 5) угол между боковым ребром ам и плоскостью дмс

Yanawer Yanawer    1   10.03.2019 05:40    14

Ответы

Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.

Основание данной пирамиды - квадрат. 

Её высота МО- катет, противолежащий углу 60º в прямоугольного треугольника с гипотенузой 8 см.

МО=МВ•sin60º=4√3

 ОВ противолежит углу 30º

ОВ= МВ•sin30º=4 см

ОВ- половина диагонали квадрата АВСД

ОВ=ОА. 

Стороны основания равны АВ=ВО:sin 45º=4√2

Апофема МН по т.Пифагора из ∆ МНВ

МН=√(МС²-НВ²)=√56

 

1) 

Площадь боковой поверхности

S(бок)=4•МН•HВ=4•2•√112=32√7 см²

2) 

Объем пирамиды:

V=S•H:3

S (осн)=АВ² =(4√2)² =32 см² 

V=(32•4√3):3=128:√3 см³ 

3) 

Угол между противоположными боковыми гранями - это двугранный угол между плоскостями, содержащими эти грани. 

Он измеряется величиной угла, образованного прямыми, по которым грани пересекаются перпендикулярной им плоскостью КМН  т.е. величине угла между МК и МН

Величину∠КМН  можно найти по т.косинусов,  по формуле приведения двойного  угла  или  из отношения высоты НР треугольника КМН к апофеме МН. ( длина НР пригодится и дальше). 

НР=2S∆ КМН:МК

2S ∆ КМН=МО•КН=4√3•4√2=16√6

НР=16√6:√56=(8√21):7

sin ∠НМР=(8√21):(7•√56)=(√24):7≈ 0,699854....

Это синус угла ≈ 44,4º  или 44º24

4) 

Объем описанного около пирамиды шара 

Около данной пирамиды можно описать шар, так как  около ее основания - квадрата - можно описать окружность (свойство описанного шара).  

Центр его лежит в точке пересечения высот (срединных перпендикуляров) правильного ∆ ВМД

V=4πR³:3

Радиус описанного шара равен радиусу описанной вокруг правильного ∆ ДМВ  окружности. (углы при ДВ=60º)

2R=МВ:sin60º

R=8/√3

V=π•4•(8/√3)³:3

V=π•2048/3•3√3=π•(2048√3):27= 131,379π или при π=3,14 ≈  412,74

5) 

угол между боковым ребром АМ и плоскостью ДМС

На рисунке пирамида для наглядности «уложена» на боковую грань ДМС. 

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на данную плоскость.

Проекция АМ на плоскость ДМС - это отрезок, который соединяет т.М с основание перпендикуляра из т.А на данную плоскость. 

АВ || СД. ⇒АВ  параллельна плоскости ДМС,⇒

все точки АВ находятся на равном расстоянии от  плоскости ДМС,

Искомый угол -∠ АМТ 

  Перпендикуляр АТ из точки  А наклонной АМ на  плоскость ДМС  параллелен и равен перпендикуляру из любой другой точки  АВ на ту же плоскость. ⇒

АТ=НР=(8√21):7 

sin∠ АМТ=АТ:АМ={(8√21):7}:8=(√21):7≈0,65465...

∠ АМТ= ≈40º54’ ≈ 41º


Вправильной четырехугольной пирамиде мавсд боковое ребро равно 8 см и наклонено к плоскости основани
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия