Вправильной 12-угольной пирамиде апофема равна 2 корня из 2,все боковые грани которой наклонены к плоскости основанию под углом 45.найдите её объем. !

tat2119 tat2119    1   07.08.2019 23:00    2

Ответы
кек903 кек903  04.10.2020 03:57
На фото изображена часть данной пирамиды: ОР-высота пирамиды,
АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°.
∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них.
ΔРОК. ОР=ОК=2
ОК⊥АВ. 
ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08.
SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08.
Площадь основания состоит из 12-ти таких треугольников.
Площадь основания пирамиды равна S=1,08·12=12,96.
Объем пирамиды равен V=12.96·2/3=8,64 
ответ : 8,64 куб. ед.
Вправильной 12-угольной пирамиде апофема равна 2 корня из 2,все боковые грани которой наклонены к пл
ПОКАЗАТЬ ОТВЕТЫ