См. рисунок в файле решать можно разными например, "в лоб" - там вычислять нужно 1) по теореме Пифагора (r+6)²+(r+20)²=(6+20)² Находим из этого уравнения r, потом катеты, потом площадь. Долго и муторно 2) метод "оптимальный" S=(r+6)*(r+20)/2=(r²+26r+120)/2 - обращаем внимание на r²+26r
(r+6)²+(r+20)²=(6+20)² раскрывая скобки и приводя, получаем r²+26r=120 эти 120 подставляем в S S=(r²+26r+120)/2 =(120+120)/2=12
Ну и третий - самый простой и "для ленивых" (доказывается легко) Если точка касания вписанн. окр. делит гипотенузу на отрезки, то площадь треугольника равна произведению длин этих отрезков., т.е 6*20=120
решать можно разными
например, "в лоб" - там вычислять нужно
1) по теореме Пифагора
(r+6)²+(r+20)²=(6+20)² Находим из этого уравнения r, потом катеты, потом площадь. Долго и муторно
2) метод "оптимальный"
S=(r+6)*(r+20)/2=(r²+26r+120)/2 - обращаем внимание на r²+26r
(r+6)²+(r+20)²=(6+20)² раскрывая скобки и приводя, получаем
r²+26r=120
эти 120 подставляем в S
S=(r²+26r+120)/2 =(120+120)/2=12
Ну и третий - самый простой и "для ленивых" (доказывается легко)
Если точка касания вписанн. окр. делит гипотенузу на отрезки, то площадь треугольника равна произведению длин этих отрезков., т.е 6*20=120