Впараллелограмме klmn точка a — середина стороны lm. известно, что ka=na. докажите, что данный параллелограмм — прямоугольник.

MorohaHaimura MorohaHaimura    2   22.07.2019 15:20    2

Ответы
SmartFox1 SmartFox1  03.10.2020 10:53
Рассмотрим ΔKAL и ΔANM: NM=KL(по опр. парал.), МА=АL(т.к. А-середина ML), KA=NA(по опр.)⇒ΔКАL=ΔANM(по 3м сторонам).⇒∠КLA=∠AMN.(как соотв. элементы в равных Δ)
Сумма углов при одной стороне параллелогр. равна 180, а ∠KLA=∠AMN⇒∠KLA=∠AMN=90.
Тогда KLMN-прямоугольник.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия