Востроугольном треугольнике abc la(угол а)=45* bc=13см. на стороне ас взята точка d так что dc=5см bd=12cm докажите что треуг.bcd прямоугольный и найдите площадь треугольника abc

kartil kartil    2   02.03.2019 13:10    2

Ответы
Lenusea10 Lenusea10  23.05.2020 21:54

решение: треугольник АDС. Допустим что треугольник прямоугольный. Докажем это. По теореме Пифагора - с2= а2+b2(где 2 -квадрат числа, с - гипотенуза, a и b катеты) - имеем: 13(2)=12(2)+5(2) проверим: 169=144+25 - верно, следовательно треугольник прямоугольный.
Раз угол BDC 90*, значит и угол BDA тоже 90*, следовательно треугольник ADB прямоугольный. В треугольнике ADB угол D=90*, угол А=45*, дальше по свойству прямоугольного треугольника( сумма острых углов в прямоугольном треугольнике равна 90*) имеем: 90* - уголА= 45* угол Аи угол Вравны( по 45*) следовательно треугольник равнобедренный. По свойству равнобедренного  треугольника( против равных углов лежат равные стороны) имеем: AD=DB=12см.
AD=12см, DC = 5 см. AC= AD+DC= 12+5=17.  Sabc=(BD*AC):2= 102см(2)
P.S. Надеюсь дала исчерпывающий ответ))) 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия