Восновании пирамиды abcde лежит ромб abcd. высота пирамиды соединяет вершину е с серединой ребра ав при основании. известно,что объем пирамиды равен 1200 см кубических, высота 30 см и разность между длинами диагоналей основания равна 14 см. вычислите угол между наименьшим боковым ребром и плоскостью основания пирамиды.

юля2738 юля2738    2   30.07.2019 18:20    4

Ответы
Zara2217 Zara2217  31.07.2020 23:19
ЕАВСД - пирамида. AC>ВД. АН=ВН, Н∈АВ.
В тр-ке АВЕ ЕН - высота. Так как АН=ВН и ЕН⊥АВ, то ΔАВЕ - равнобедренный. ЕА=ЕВ.
Пусть диагонали основания равны х и у, тогда х-у=14, х=у+14.
Площадь основания (ромба): S=ху/2=у(у+14)/2=(у²+14у)/2.
Объём пирамиды: V=Sh/3=30(у+14у)/6=1200 ⇒
у²+14у-240=0,
у1≠-24, у2=10.
ВД=10 см, АС=10+14=24 см.
В тр-ке АВО АО=АС/2=12 см, ВО=ВД/2=5 см. АВ²=АО²+ВО²=169,
АВ=13 см.
В тр-ке АВД ДН - медиана. ДН=0.5√(2АД²+2ВД²-АВ²)=√(АВ²+2ВД²)=√(13²+2·10²)≈19.2 см.
АН<ДН, значит ребро ЕА меньше ребра ЕД. Следовательно нужно найти угол ЕАН.
 В тр-ке ЕНА tg(ЕАН)=EH/AH=30/6.5=60/13.
∠ЕАН=arctg(60/13)≈77.77° - это ответ.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия