Восновании четырёхугольной пирамиды трапеция с острым углом 30° и высотой 22 см. боковые грани пирамиды, которые содержат короткое основание и короткую боковую сторону трапеции, перпендикулярны плоскости трапеции и прямой двугранный угол между собой. остальные боковые грани образуют с плоскостью трапеции угол величиной 60°. 1) определи вид трапеции, которая лежит в основании пирамиды: 2)рассчитай площадь боковых граней трапеции: s=? + ?
Трапеция в основании прямоугольная.
Её высота, она же боковая сторона, АС = ДЕ = 22 см
Грань АВТ наклонена к основанию на 60°, значит
∠САТ = 60°
в ΔСАТ
∠СТА = 90 - 60 = 30°
Катет против угла в 30° в два раза меньше гипотенузы,
АТ = 2*22 = 44 см
Высота пирамиды по теореме Пифагора
СТ = √(АТ² - АС²) = √(44² - 22²) = 22√3 см
S(CTA) = 1/2*СТ*СА = 1/2*22*22√3 = 242√3 см²
---
Плоскость ТДВ наклонена к плоскости основания по условию на 60°
Линия ДВ является линией пересечения плоскостей
∠СФТ является углом между плоскостями
∠СФТ = 60°
ФС = 22 см
---
в ΔСДФ
∠СДФ = 30°
∠СФД = 90°
СД = 2*ФС = 44 см
S(СДТ) = 1/2*СТ*СД = 1/2*22√3*44 = 484√3 см²
---
в ΔАВС
∠АВС = 15°
tg(15°) = 2-√3
ctg(15°) = 2+√3
АВ/АС = ctg(15°)
АВ = 22*(2+√3) см
АТ = 44 см
S(АВТ) = 1/2*АВ*АТ = 1/2*22*(2+√3)*44 = 968 + 484√3 см²
---
S(ДВТ) = S(ФВТ) - S(ФДТ) = S(АВТ) - S(ФДТ)
S(ФДТ) = 1/2*ФД*ФТ = 1/2*22√3*44 = 484√3 см²
S(ДВТ) = 968 + 484√3 - 484√3 = 968 см²
---
S(бок) = S(CTA) + S(СДТ) + S(АВТ) + S(ДВТ)
S(бок) = 242√3 + 484√3 + 968 + 484√3 + 968 = 1936 + 1210√3 см²
Вот аналогичная задача с высотой трапеции 26