Формула объёма конуса: , где
S - площадь основания
h - высота конуса
Т.к. основанием конуса является круг, то
Формула площади круга: , где
π - число пи
R - радиус круга
Как мы знаем радиус - половина диаметра ⇒ формула может выглядеть и так:
Получается формула объёма конуса становится такой:
Теперь пусть d - диаметр нового конуса, тогда 2,5d - первоначальный диаметр конуса
V₁ - первоначальный объём конуса, а V₂ - новый объём конуса
Получается:
Теперь ищем
и h сокращаются, получается:
ответ: в 6,25 раз уменьшится V конуса
Формула объёма конуса:
, где
S - площадь основания
h - высота конуса
Т.к. основанием конуса является круг, то
Формула площади круга:
, где
π - число пи
R - радиус круга
Как мы знаем радиус - половина диаметра ⇒ формула может выглядеть и так:
Получается формула объёма конуса становится такой:
Теперь пусть d - диаметр нового конуса, тогда 2,5d - первоначальный диаметр конуса
V₁ - первоначальный объём конуса, а V₂ - новый объём конуса
Получается:
Теперь ищем
ответ: в 6,25 раз уменьшится V конуса