Верно ли утверждение.
Точка О – основание высоты пирамиды.
1. Если боковые ребра пирамиды образуют равные углы с высотой пирамиды, то точка О – центр вписанной в основание окружности.
2. Если высоты всех боковых граней, проведенные из вершины пирамиды равны, то точка О – центр окружности, вписанной в основание.
3. Если все боковые ребра пирамиды равны, то точка О – центр описанной около основания пирамиды окружности.
4. Если боковые ребра пирамиды равны и ее основание тупоугольный треугольник, то точка О лежит вне основания пирамиды.
5. Если боковые ребра пирамиды равны и основание прямоугольный треугольник, то точка О лежит в центре треугольника.
6. В пирамиде может быть две боковые грани перпендикулярные основанию пирамиды.
7. В пирамиде может быть три боковые грани перпендикулярные основанию пирамиды.
8. Если одна из боковых граней пирамиды перпендикулярна основанию пирамиды, то высота пирамиды совпадает с апофемой этой боковой грани пирамиды.
9. Если все боковые ребра пирамиды наклонены к плоскости основания под одним и тем же углом, то точка О – центр окружности описанной около основания пирамиды.
10. Если все двугранные углы при основании пирамиды равны, то точка О – центр вписанной в основание пирамиды окружности.
11. Если все ребра пирамиды равны и ее основание прямоугольник, то точка О – является точкой пересечения диагоналей прямоугольника.
12. Если все апофемы пирамиды равны, а ее основание равносторонний треугольник, то точка О – точка пересечения медиан этого треугольника.
(напротив номера задания записать «да» или «нет»)
2. Если высоты всех боковых граней, проведенные из вершины пирамиды равны, то точка О – центр окружности, вписанной в основание. Да. Если высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны, то точка О является центром окружности, вписанной в основание пирамиды.
3. Если все боковые ребра пирамиды равны, то точка О – центр описанной около основания пирамиды окружности. Нет. Если все боковые ребра пирамиды равны, то точка О не обязательно является центром описанной около основания пирамиды окружности. Это утверждение неверно.
4. Если боковые ребра пирамиды равны и ее основание тупоугольный треугольник, то точка О лежит вне основания пирамиды. Да. Если боковые ребра пирамиды равны и ее основание является тупоугольным треугольником, то точка О лежит вне основания пирамиды.
5. Если боковые ребра пирамиды равны и основание прямоугольный треугольник, то точка О лежит в центре треугольника. Нет. Если боковые ребра пирамиды равны и основание является прямоугольным треугольником, то точка О не обязательно будет лежать в центре треугольника. Это утверждение неверно.
6. В пирамиде может быть две боковые грани перпендикулярные основанию пирамиды. Нет. В пирамиде количество боковых граней, перпендикулярных основанию пирамиды, может быть только одна или ни одной. Утверждение неверно.
7. В пирамиде может быть три боковые грани перпендикулярные основанию пирамиды. Да. В пирамиде может быть три боковые грани, которые перпендикулярны основанию пирамиды.
8. Если одна из боковых граней пирамиды перпендикулярна основанию пирамиды, то высота пирамиды совпадает с апофемой этой боковой грани пирамиды. Нет. Если одна из боковых граней пирамиды перпендикулярна основанию пирамиды, то высота пирамиды не обязательно будет совпадать с апофемой этой боковой грани. Утверждение неверно.
9. Если все боковые ребра пирамиды наклонены к плоскости основания под одним и тем же углом, то точка О – центр окружности описанной около основания пирамиды. Да. Если все боковые ребра пирамиды наклонены к плоскости основания пирамиды под одним и тем же углом, то точка О является центром окружности, описанной около основания пирамиды.
10. Если все двугранные углы при основании пирамиды равны, то точка О – центр вписанной в основание пирамиды окружности. Да. Если все двугранные углы при основании пирамиды равны, то точка О является центром вписанной окружности в основание пирамиды.
11. Если все ребра пирамиды равны и ее основание прямоугольник, то точка О – является точкой пересечения диагоналей прямоугольника. Нет. Если все ребра пирамиды равны и ее основание является прямоугольником, то точка О не обязательно будет являться точкой пересечения диагоналей прямоугольника. Утверждение неверно.
12. Если все апофемы пирамиды равны, а ее основание равносторонний треугольник, то точка О – точка пересечения медиан этого треугольника. Нет. Если все апофемы пирамиды равны и ее основание является равносторонним треугольником, то точка О не обязательно будет являться точкой пересечения медиан этого треугольника. Утверждение неверно.