Вцилиндр вписан шар, и около него описан шар. объем вписанного шара равен 36п дм^3. найдите площадь поверхности описанного шара.

ssssss22 ssssss22    1   22.07.2019 13:30    5

Ответы
angelinalitvine angelinalitvine  03.10.2020 10:46
1. шар вписан в цилиндр. осевое сечение цилиндра+вписанного шара - окружность, вписанная в квадрат.
диаметр вписанного шара D₁=высоте цилиндра Н=диаметру основания цилиндра=стороне квадрата(осевого сечения)

Vш=(4/3)πR³. 36π=(4/3)πR³. R³=27. R₁=3 дм
а=2*R₁. a=6 дм

2. шар описан около цилиндра. осевое сечение цилиндр+описанный шар - окружность, описанная около квадрата.
диаметр описанной около квадрата окружности D₂= диагонали квадрата d.
d²=a²+a². d²=2a². d=a√2
D₂=6√2. R₂=3√2
V₂=(4/3)πR₂³
V₂=(4/3)*π*(3√2)³
V₂=144√2π дм³ объем шара, описанного около цилиндра.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия