В треугольнике АВС на стороне ВС взята точка N, такая, что BN: NC = 3: 2. Отрезок AN и медиана ВМ пересекаются в точке О. Найдите, в каком отношении точка О делит каждый из этих отрезков.
Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р.
Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам.
Но NC=3, значит, NP=1,5.
Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ.
Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р.
Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам.
Но NC=3, значит, NP=1,5.
Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ.
ответ: 2:3
ответ 3:1
решение задания прилагаю