В треуг. ABC проведена биссектриса BB1.Найти углы этого треугольника, если известно, что AB=BB1=B1C. ​

strongbaltaevowj0hz strongbaltaevowj0hz    1   24.07.2020 16:50    7

Ответы
okfuh okfuh  15.10.2020 15:31

∡A=72 °   ∡B=72 °     ∡C=36 °  

Объяснение:

Так как АВ=ВВ1 ,  то ΔВАВ1 - равнобедренный => BAB1=BB1A=x

=> ∡ABB1=∡B1BC= 180°-2x

Так как BB1=B1C, =>  ΔВВ1C - равнобедренный => ∡B1BC=∡B1CB=180°-2x

Теперь сложим все углы в треугольнике АВС:

∡А+2*∡ABB1+∡C= x+360-4x+180-2x=180

360-5x=0

x=360/5

x=∡A=72°,  ∡B=360-4x=360-288=72°

∡C=180°-2x=180-2*72=36°

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия